Background: This study was undertaken to identify and functionally characterize virulence genes from Salmonella isolates in street food and stool cultures. From February 2017 to May 2018, clinical and food Salmonella strains were isolated in three regions in Burkina Faso. Salmonella was serotyped according to the White-Kauffmann-Le Minor method, and polymerase chain reaction (PCR) was used to detec invA, spvR, spvC, fimA and stn virulence genes commonly associated with salmonellosis in Sub-Saharan Africa.
Results: A total of 106 Salmonella isolates (77 human stools; 14 sandwiches) was analyzed using a serological identification with an O-group test reagent. The presence of Salmonella was confirmed in 86% (91/106) of the samples were reactive (OMA-positive/OMB-positive). Salmonella serogroup O:4,5 was the most common serogroup detected (40%; 36/91). Salmonella Enteritidis and Typhimurium represented 5.5% (5/91) and 3.3% (3/91), respectively and were identified only from clinical isolates. Furthermore, 14 serotypes of Salmonella (12/91 human strains and 2/15 sandwich strains) were evocative of Kentucky/Bargny serotype. For the genetic profile, 66% (70/106) of the Salmonella had invA and stn genes; 77.4% (82/106) had the fimA gene. The spvR gene was found in 36.8% (39/106) of the isolates while 48.1% (51/106) had the spvC gene. Among the identified Salmonella Enteritidis and Salmonella Typhimurium isolated from stools, the virulence genes detected were invA (3/5) versus (2/3), fimA (4/5) versus (3/3), stn (3/5) versus (2/3), spvR (4/5) versus (2/3) and spvC (3/5) versus (2/3), respectively.
Conclusion: This study reports the prevalence of Salmonella serotypes and virulence genes in clinical isolates and in street foods. It shows that food could be a significant source of Salmonella transmission to humans. Our results could help decision-making by the Burkina Faso health authority in the fight against street food-related diseases, in particular by training restaurateurs in food hygiene.
Keywords: Burkina Faso; Gastroenteritis; Salmonella; Sandwiches; Serotypes; Virulence genes.
© 2021. The Author(s).